Finally, something apt for my appetite!
4-3[clrs]:
Since I'm a lazy person, I'll not show the lower bounds.
For the upper bound:
First of all we'll need two summations:
\sum_{j=0}^{j=i}(\frac {4}{3})^j = 4[(\frac{4}{3})^i-1]
and
\sum_{j=0}^{j=i}(j \times (\frac {4}{3})^j) = M = 1 \times (4/3)+2 \times (4/3)^2+ 3 \times (4/3)^3 +...+i \times (4/3)^i \\ \frac {4}{3} \times M = 1 \times (4/3)^2 + 2 \times (4/3)^3 + 3 \times (4/3)^4 +...+i \times (4/3)^{i+1} \\ M - \frac{4}{3} \times M = \sum_{j=1}^{j=i}(\frac{4}{3})^j-i \times (\frac{4}{3})^{i+1}\\ \frac{M}{3} = i \times (\frac{4}{3})^{i+1}-4 \times (\frac {4}{3})^i+4 \\ M = 3i \times (\frac{4}{3})^{i+1}-12 \times(\frac{4}{3})^i+12 \\ = (4i-12) \times (\frac{4}{3})^i+12
Now, see T(n) = 4 T(\frac{4}{3})+nlgn \\ = 4 ( 4T(n/3^2)+(n/3)lg(n/3))+nlgn \\ = 4 ^2 T(n/3^2)+(4/3)lg(n/3)+n lgn \\ = 4 ^3 T(n/3^3)+ (4/3)^2lg(n/3^2)+n lgn \\ = 4^i T(n/3^i)+ \sum_{j=1}^{j=i}(\frac{4}{3})^{j-1}lg(\frac{n}{3^{j-1}}) \\ = 4^iT(n/3^i)+ \frac{3}{4} \times \sum_{j=1}^{j=i} (\frac{4}{3})^j[lgn - (j-1)lg3] \\ = 4^i T(n/3^i)+ \frac{3}{4} \times lgn \times \sum_{j=1}^{j=i} (\frac{4}{3})^j - \frac{3}{4} log 3 \sum_{j=1}^{j=i} j \times (\frac{4}{3})^j + \frac{3}{4} lg3 \times \sum_{j=1}^{j=i} (\frac{4}{3})^j \\ = 4^i T(n/3^i)+3\times lgn [4 [(\frac{4}{3})^i-1]] -\frac{3}{4} log 3 [(4i-12)(\frac{4}{3})^i+12]+\frac{3}{4}\times lg3 [4[(\frac{4}{3})^i-1]] \\ = 4^iT(n/3^i)+3\times lgn \times (\frac{4}{3})^i -3\times lg 4 - 3 \times lg3 [ 4i\times (4/3)^i-12 (4/3)^i+12]+3 lg3 \times (4/3)^i- \frac{3}{4}lg3
Since, we're finding only the asymptotic bounds, therefore, we can remove the constant terms, and moreover n/3^i=1 when i=log_3n = k. Therefore, doing that:
T(n) = 4^k \times T(1) + 3 lgn \times (\frac{4}{3})^k - 4k (4/3)^k +12\times /3)^k -12 +(4/3)^k \\= 4^{log_3n} + 3 log_2n \frac{4^{log_3n}}{n}-\frac{4 log_3n}{n}+\frac{4^{log_3n}}{n}-12
From this equation, we can see that the largest term is 4^{log_3n}. Hence the asymptotic upperbound of the given recurrence is O(4^{log_3n})=O(n^{log_34}).
4-3[clrs]:
Give asymptotic upper and lower bounds for T(n) in each of the following recurrences. Assume that T(n) is constant for sufficiently small n. Make your bounds as tight as possible, and justify your answers.(a) T(n) = 4T(n/3)+nlgn
Since I'm a lazy person, I'll not show the lower bounds.
For the upper bound:
First of all we'll need two summations:
\sum_{j=0}^{j=i}(\frac {4}{3})^j = 4[(\frac{4}{3})^i-1]
and
\sum_{j=0}^{j=i}(j \times (\frac {4}{3})^j) = M = 1 \times (4/3)+2 \times (4/3)^2+ 3 \times (4/3)^3 +...+i \times (4/3)^i \\ \frac {4}{3} \times M = 1 \times (4/3)^2 + 2 \times (4/3)^3 + 3 \times (4/3)^4 +...+i \times (4/3)^{i+1} \\ M - \frac{4}{3} \times M = \sum_{j=1}^{j=i}(\frac{4}{3})^j-i \times (\frac{4}{3})^{i+1}\\ \frac{M}{3} = i \times (\frac{4}{3})^{i+1}-4 \times (\frac {4}{3})^i+4 \\ M = 3i \times (\frac{4}{3})^{i+1}-12 \times(\frac{4}{3})^i+12 \\ = (4i-12) \times (\frac{4}{3})^i+12
Now, see T(n) = 4 T(\frac{4}{3})+nlgn \\ = 4 ( 4T(n/3^2)+(n/3)lg(n/3))+nlgn \\ = 4 ^2 T(n/3^2)+(4/3)lg(n/3)+n lgn \\ = 4 ^3 T(n/3^3)+ (4/3)^2lg(n/3^2)+n lgn \\ = 4^i T(n/3^i)+ \sum_{j=1}^{j=i}(\frac{4}{3})^{j-1}lg(\frac{n}{3^{j-1}}) \\ = 4^iT(n/3^i)+ \frac{3}{4} \times \sum_{j=1}^{j=i} (\frac{4}{3})^j[lgn - (j-1)lg3] \\ = 4^i T(n/3^i)+ \frac{3}{4} \times lgn \times \sum_{j=1}^{j=i} (\frac{4}{3})^j - \frac{3}{4} log 3 \sum_{j=1}^{j=i} j \times (\frac{4}{3})^j + \frac{3}{4} lg3 \times \sum_{j=1}^{j=i} (\frac{4}{3})^j \\ = 4^i T(n/3^i)+3\times lgn [4 [(\frac{4}{3})^i-1]] -\frac{3}{4} log 3 [(4i-12)(\frac{4}{3})^i+12]+\frac{3}{4}\times lg3 [4[(\frac{4}{3})^i-1]] \\ = 4^iT(n/3^i)+3\times lgn \times (\frac{4}{3})^i -3\times lg 4 - 3 \times lg3 [ 4i\times (4/3)^i-12 (4/3)^i+12]+3 lg3 \times (4/3)^i- \frac{3}{4}lg3
Since, we're finding only the asymptotic bounds, therefore, we can remove the constant terms, and moreover n/3^i=1 when i=log_3n = k. Therefore, doing that:
T(n) = 4^k \times T(1) + 3 lgn \times (\frac{4}{3})^k - 4k (4/3)^k +12\times /3)^k -12 +(4/3)^k \\= 4^{log_3n} + 3 log_2n \frac{4^{log_3n}}{n}-\frac{4 log_3n}{n}+\frac{4^{log_3n}}{n}-12
From this equation, we can see that the largest term is 4^{log_3n}. Hence the asymptotic upperbound of the given recurrence is O(4^{log_3n})=O(n^{log_34}).